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The Born series and multiple scattenng expansion for the off-shell wave func- 
tions corresponding to a system of three charged particles are studied. Explicit 
expressions are derived for the anomalous terms and divergences which occur in 
these perturbation expansions in the energy-shell limit. A prescription is given 
for canceling these anomalous terms. The resulting "renormalized" perturbation 
expansions are used to formulate various approximations to the T matrices for 
excitation and ionization of a neutral fragment by a charged particle. 

1. I N T R O D U C T I O N  

It  should be possible to use a perturbational approach to calculate the 
wave function and T matrix for a quantum mechanical system involving 
nonsingular forces which go to zero for large particle separation. In the case 
of short-range forces such an approach can be based on the iterations of the 
various integral equations satisfied by the wave function and T matrix. 
However, for scattering involving long-range potentials there are well-known 
difficulties in basing a perturbation formalism on either the usual off-shell 
integral equations or equations involving cutoff long-range potentials. These 
difficulties manifest  themselves as anomalous terms and divergences when 
one attempts to take the limit to physical energies in the off-shell perturba- 
tion formalism or remove the cutoff in the perturbation formalism involving 
cutoff  long~range potentials. 

i n  th is-paper  we will show the occurrence of anomalous terms and 
divergences in the energy-shell limit of the Born and multiple scattering 
expansions for the off-shell wave functions corresponding to a system of 
three charged particles. A prescription for canceling these anomalous terms 
together with a justification of this "renormalization" procedure is given. 
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922 Zorbas 

We will concentrate on the wave functions corresponding to the free 
channel and the channel a consisting of a neutral fragment and a charged 
particle. 

The off-shell wave function corresponding to the free channel, denoted 
~+~(x, p), satisfies both the Lippmann-Schwinger equation (see Appendix 
A for notation) 

q~+~(x,p)=%(x,p)-fdyGo(x,y;E+ie)V(y),I,+~(y,p) (1) 

and the Weinberg-Van Winter equation (Van Winter, 1964; Weinberg, 
1964; Van Winter and Brascamp, 1968; the problem of spurious solutions is 
discussed in Vanzani, 1978). 

q~+~(x,P)=q~o(x,P)+ ~ [qJJ+~(x,p)-q~o(X,P)] 
i<j 

-- i~<2f dy[Gij(x, y; E+ie)-Go(x, y; E+ie) ]  

• E Vk,(Y)qJ+,(Y,P) 
k < l  (k,O§ (2) 

An argument is given in this paper to show the development of anomalous 
terms and divergences as ~ -  + 0 in each term of the Born series correspond- 
ing to (1) and the multiple scattering expansion obtained by iterating (2). It 
has been shown (Zorbas, 1977)that ~+~(x, p) develops an anomalous 
multiplicative factor as e ~ + 0 due to the short-range asymptotic condition 
which is implicitly assumed in the definition of the off-shell wave ftmction. 
We will argue that this factor is the source of the anomalous terms and 
divergences in the Born series and is partially responsible for the diver- 
gences in the multiple scattering expansion for ~+~(x, p). 

The perturbation formalism for the off-shell wave function correspond- 
ing to the channel a illustrates another source of anomalous terms in 
perturbation theory involving long-range potentials. The a channel wave 
function, denoted ff%,(x, p), satisfies the integral equation (see Appendix A 
and Geltman, 1969) 

f '~ --q~+~(x,p)- dyGl(x,y;E'~+te)V23(y)q~+~(y,p) (3) 

An argument is given in this paper to show that the terms of the perturba- 
tion expansion, obtained by iterating (3), develop anomalous terms and 
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divergences as e -  + 0. It is not hard to show, using an argument similar to 
that given in Zorbas (1977), that q~_~(x, p)  does not develop an anomalous 
multiplicative factor as e -  +0. This result is directly attributable to the 
effective short-range interaction between a charged particle and a neutral 
fragment. We will argue that the anomalous terms appearing in the itera- 
tions of (3) are due to an inadequate choice of the "unperturbed" term 

p). 
In a recent paper (Zorbas, 1978) the occurrence of anomalous terms in 

the off-shell Born series for two-particle Coulomb-like scattering was ex- 
amined. For a general class of Coulomb-like potentials it was shown that 
the anomalous multiplicative factor in the off-shell wave function is the 
source of the anomalous terms and divergences in the energy-shell limit of 
the Born series. A prescription was given for canceling the anomalous terms 
in the off-shell Born series. The resulting perturbation expansion was shown 
to be term-by-term convergent to the perturbation expansion for the physi- 
cal Coulomb wave function. 

This paper provides a three-particle generalization of these two-particle 
results, In the case of the Born series corresponding to (1) an argument is 
given to show that the two-particle prescription (Zorbas, 1978) has a natural 
extension to three-particle Coulomb scattering) In the case of the multiple 
scattering expansion corresponding to (2) and the iterations of (3) a pre- 
scription is given for canceling anomalous terms so as to obtain term-by-term 
convergent (in the limit e~  +0) perturbation expansions for the three- 
particle wave functions. 

The approach taken in this paper is based on the time-dependent 
theory and the relationship between the time-dependent and stationary 
scattering formalisms (Amrein et al., 1977; Prugove~ki, 1971). The basic 
idea is to use the I t[ -, ~ behavior of various time-dependent expressions to 
obtain information concerning the e--, +0  behavior of the corresponding 
stationary expressions. Many of the arguments given in this paper are 
formal in that domain problems are not considered. Furthermore, we will 
conclude convergence of various integrals by formal power counting argu- 
ments. 

We now give an outline of the contents of this paper. The basic idea of 
our approach is illustrated in Section 2 by the pedagogical example of a 
constant perturbation. In Section 3 the occurrence of anomalous terms in 
the Born series for ~+~(x, p)  is shown, and in Section 4 a prescription is 
given to cancel these terms. In Section 5 we unravel the anomalous terms in 
the multiple scattering expansion for eO+~(x, p). A "renormalized" multiple 

~It is straightforward to generalize the results of Sections 3 and 4 of this paper to general 
N-particle Coulomb systems. 
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scattering expansion is proposed in Section 6. The perturbation expansions 
corresponding to the scattering of a charged particle by a fixed neutral 
"fragment" are discussed in Section 7. The occurrence and cancellation of 
anomalous terms in the iterations of (3) is shown in Section 8. Applications 
of these results to excitation and ionization are briefly considered in Section 
9, and the paper concludes with a discussion in Section 10. 

2. A SIMPLE EXAMPLE 

In this section an exactly solvable example is given which illustrates the 
basic ideas behind our approach. 

Consider the Hamiltonian 

H=Ho + ~ )~ij, )~ij ER1 
i<j 

The correct time-dependent scattering theory for this Hamiltonian is based 
on the operator flU) given by 

~(t)----- W( t )exp[- iG(  t )] 

W(t ) -- exp (iHt)exp ( - i H  o t ), G( t )= E )~ij t 
i<j 

Note that the usual off-shell formalism is based on the operators W(t), 
not on the correct operator f l U ) -  L In order to see this define the operators 
W+~ by 

W+~ = (oo du exp ( - u ) W( - u/e) 
Jo 

It is not difficult to verify the following equality for appropriate functions ~p 
(see Appendix B): 

f (p) 

where q~+~(x, p) satisfies the off-shell Lippmann-Schwinger equations 

q~+~(x, p)=~o(X, p)- -  ~ f dyGo(x, y; E+ie)~ijq~+~(y, p)  
i<j 

The above argument shows that ~+~(x, p) and the integral equation satis- 
fied by ~+,(x, p) are directly related to the operators W(t) which do not 
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correctly incorporate the asymptotic condition for a constant potential. 
That is, the off-shell Lippmann-Schwinger equation corresponds to treating 
H as a perturbation of H0; however, for long-range forces H 0 does not 
generate the correct "free dynamics." 

It is straightforward to calculate @+~(x, p)  for each e>0: 

%(x, p ) 
p) = E x,+ 

i<j 

The incorrect choice of asymptotic condition is mirrored in the convergence 
of @+~(x, p)  to zero as e--, +0. Furthermore, there are divergences in each 
term of the Born series for q~+,(x, p)  in the energy-shell limit. 

In order to avoid the above difficulties one must base the off-shell 
formalism on the correct asymptotic condition. According to the prescrip- 
tion given by Zorbas (1976), an off-shell stationary formalism should be 
based on the following "renormalized" off-shell wave function: 

q~+,(x, p )A +, 

where 

i<j 

ie 

Clearly the renormalized off-shell wave function is the correct wave function 
for a constant perturbation. 

The simple pedagogical example of this section suggests that one source 
of anomalous terms in the usual off-shell perturbation formalism involving 
long-range potentials is the short-range asymptotic condition which forms 
the basis of this formalism. Furthermore, if the off-shell formalism is based 
on the correct asymptotic condition it should be possible to formulate a 
perturbation expansion which is free of anomalous terms and divergences. 

3. D I V E R G E N C E S  IN THE B O R N  SERIES 

In this section we examine the development of anomalous terms and 
divergences in the Born series for q>+~(X, P) as e -  +0. Our approach is 
based on the t - - o o  behavior of the iterations of the time-dependent 
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equations 2 

W(t)=a+i fo'dUW(u)V(u) 

Zorbas 

where 

with 

_ _  

X(X)={~ if [x[~>l 
if Ix[ < 1 

and W(x) defined by (5). The following equality is valid (Alsholm, 1977): 

exp(iHot)Vt(Xl,X2)exp(-iHot)=exp [~ - ---~-)VI ( p l t i L ~  ml , m2PEt )exp ( ~ ) "  

(6) 

2The perturbation expansions for @_~(x, p) can be studied by a similar argument involving 
t~ +oo. 

x ) 
~1 "-~2 1 

W(t)=exp(iHt)exp(-iHot), V(t)=exp(iHot)Vexp(--iHot ) 

The perturbation expansion for W(t) is given by 

oo 

W(t)= ~ W~(t) (4) 
n = 0  

where W0(t)=,~ and for n~>l 

" - - ' n l ' '  t'Ul " fo NUnV(Un)V(Un--1) ' ' 'V(ul)  

In order to extract the large-] t[ behavior of V(t)= Y,i<jV~j(t) we rewrite 
V as follows: 

V(x)=V'(x)+ W(x) (5) 
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where 

m,xf 
L ~  2 + 2 

Using (6) we can rewrite V(t) as follows: 

V(t)=V'(t)+VS(t) = ~ [V/~(t)+ V/~(t)] 
i<y 

e l  ' m2 i<j ml ' m2 
(7) 

+~V.. s where formally f_~ i j ( t )d t<~ for l<~i<j~<3. 3 
We now use (7) to examine the t--, - m  behavior  of  Wn(t), n >/1. The 

first term Wl(t ) can be written as 

t - 1 t s W,(t)= fodu, tV (ul)+ fodu, iV (Ul) 

= fo'dU, iVt(u, ) +~,(t)  

where ~h(t) converges as t--, - ~ .  
Consider  W2(t ), which can be rewritten as follows: 

Wz(t )-- fo'dU, {foU'du2[iVZ(u2)] +~i(u,)} [iVt(u,)+ iV'(u, )] 
t U l  �9 1 l 

= foduifo du2[lV (u2)][iV'(Ul)]+~l(t)  fodUl[iVt(Ul)]+~12(t) 

where ~2(t) converges as t--, - ~ .  
The pat tern  should be clear and we will state the fo rm of W~(t). Define 

A 0 ( t ) = d  and  for n>~ 1 

An(t )= fotdu,foU~du2 " " u._, . t " fo dun[iV (un) ]  ""[ iV ' (u , )]  

n 

n!  

q - ~  $ 3A more precise statement of f_~V~j(t) dt<~ is, for appropriate functions 
+ ~  s t ~,f_~ II V~j( )~11 dt<t~.  



928 Zorbas 

We have, using the obvious inductive definition of ~/k(t), the following 
equality: 

n 

Wn(t)= E ~k( t )A, -k ( t )  (8) 
k=O 

where at least formally ~/~(t) converges as t--, - oo for each k. 
We now relate the divergences as t - - , -oo  appearing in (8) to diver- 

gences in the n th term of the Born expansion as e--, +0. The Born 
expansion for q)+,(x, p)  is given by 

oo 

E 
n = 0  

with H~ p)--~0(x, p)  and for n~> 1 

H~_,(x, p ) = - f dy Go(x, y; E+ie)V(y )H~_ 7 ' (y ,  p ) 

It is not difficult to formally show (Prosser, 1964) for appropriate functions 
and ~p the following equality: 

(~,fo~176 }=fdx ~ fdp4/(p)H _ (x, p) 

(9) 

where ~(p)  is the Fourier transform of ~k(x). The equality (9) provides the 
link between the t - o - o o  behavior of W.(t) and the e-o +0  behavior of 
H~_~(x, p). 

Define An+~ by 

A"+~= fo~176 )An(-U/e) 

According to (8) and (9) we have 

n 

ny+-  (10) 

where 7lk is the function of x and p corresponding to the t ~ - oo limit of 
~lk(t). Thus the slow decrease of the Coulomb potential leads to the 
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systematic occurrence of anomalous terms and divergences in each term of 
the Born series as e-+ + 0. 

4. A MODIFIED BORN SERIES 

In a recent paper (Zorbas, 1977) an off-shell formalism was proposed 
for Coulomb scattering. In particular it was shown that the three-particle 
Coulomb wave function ~+(x, p)  is given by 

,~+(x, p ) =  hm ~+~(x, p)  
e ~ + O  

where 

~+~(x, p)=~+~(x,  p)A+~(x, p) 

A +~ = F(1 - i k ) -  1 exp( - iklog e )A , (p )  

with A j (p)  a momentum-dependent phase factor and k = V(p I /m ~, P2/m 2). 
The "renormalized" off-shell wave function ~+,(x,p) is based on the 
correct asymptotic condition for Coulomb scattering and thus the off-shell 
perturbation formalism should be based on ~+~(x, p) rather than q~+~(x, p). 
This has previously been done for two-particle Coulomb scattering (Zorbas, 
1978), and in this section we use the results of Section 3 to justify a similar 
perturbation expansion for the three-particle case. 

Summing the Born series for ~+~(x, p) and using the small e behavior 
of each term given by (10) we obtain 

p )  - ,  nkA n-h-§ - 
n =  0 e ~ + 0  n = O  k = 0  n n = 0  

(11) 

If [ k I < 1 we have 

A%,= duexp - u + i  dtV t t 
n = O  

= F ( 1 - i k ) e x p ( + i k l o g e ) A 2 ( p )  

where A2(p) is a momentum-dependent phase factor. Thus the anomalous 
terms appearing in the Born series sum up to an anomalous multiplicative 
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factor which, except for a momentum-dependent factor, cancels A+, ap- 
pearing in the definition of ~+,(x, p). This result provides a justification for 
neglecting the anomalous terms appearing in the off-shell Born series for 
r p). 

The prescription for replacing the Born series by a perturbation expan- 
sion whose terms are flee of anomalous terms is immediate. Each term in 
HY~(x, p) which is multiplied by an anomalous factor Ak+~ cannot, in the 
limit e~  +0, contribute to the physical wave function. Thus we subtract 
these terms from H~,(x, p), that is, we replace H.7_,(x, p) by the expression 
/~_o(X, p) which is defined as follows: 

n - - 1  
~ r l  _ _  rl H+~(x,p)-H+,(x,p)- y, r/kA+~,,--k 

k = O  

H+~(x, p) is The e~  +0  behavior of H~_~(x, p), given by (10), shows that -" 
free of anomalous terms and divergences. Furthermore the resulting per- 
turbation expansion satisfies 

oo oo 

n : 0  n = 0  

where Y~=0~/, yields the Coulomb wave function apart from the momentum- 
dependent phase factor A l(P)A 2(P). 

A somewhat more natural way of stating this prescription is to work 
directly with ~+~(x, p). Consider A+~ and q~+~(x, p) as power series in three 
variables ( ki2, k13, k23), where kij = Vu(pl/ml, P2/m2). Multiply these 
series to obtain a power series in three variables for r p). The terms of 
this power series do not involve anomalous terms and divergences as 
e -  + 0. This is the natural three-particle generalization of the prescription 
which was recently given for the two-particle case (Zorbas, 1978). 

5. DIVERGENCES IN THE MULTIPLE SCATTERING 
EXPANSION 

In this section we examine the multiple scattering expansion for 
~,+,(x, p)  given by 

oo 

X (12) 
n = O  
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where 

K~ + E [eo~(x,P)-eOo(x,P)] 
i < j  

and for n I> 1 

K~_~(x,p)=(-1)" ~ fdy,[G,. , .(x,y,;E+ie)-Go(x,  Yn;E+ie)] 
in <Jn 

• X X 
kn < In in - 1 <Jn - 1 

- -  G O ( Y n ,  Yn- -1 ;  E+ ie)] 

x E v,~,,_~,._,(y,_,)x... 
k n - i  < l n - i  

• ~, fay,[G,,j,(y2,y~;E+ie)-Go(y:,y~;E+ie)] 
q <Jl 

• X Vk,h(Y,)K~ (13) 
kl </1 

with (k s, ls)~(i s, Js) for s = 1 .. . . .  n. Each term of (12) is related to integrals 
of time-dependent expressions in Appendix B. This relationship is used to 
extract the anomalous expressions and divergences which occur in each term 
of (12) in the energy-shell limit. A knowledge of these anomalous terms will 
allow us to replace (12) by a "renormalized" multiple scattering expansion 
whose terms are formally free of anomalous terms and divergences as 
e--, +0. This is discussed further in Section 6. In this section we give 
detailed results for K~_~(x, p), n =0, 1, and 2 together with a brief discus- 
sion of the general n th term. 

In order to extract the anomalous terms in (12) we requirevarious 
technical time-dependent results. Define the following operators: 

f~iJ( t ) =  WiJ( t ) e x p [ -  iGij( t ) ] 

WiJ( t )=exp( iH~Tt )exp(-iHot ), oi,(t)=j0  ,(.,u duV/j ml ,m2 
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According to the time-dependent theory for Coulomb scattering (Dollard, 
1963, 1964) we have 

aiJ(t ) = a~  + ~( t ) (14) 

where ~ denotes the modified wave operator corresponding to Hi~ and 
~(t)--,0 as t - ~ - ~ .  There are four types of time-dependent operators 
appearing in the integrands of (B.12) and (B.13). Applying (7) and (14) we 
can decompose these operators as follows: 

u)= + 

Wr'( -u  ) V, k t ( -u  )=~E exp[ iGr,(-u ) ] V/t( u ) + ~l( U ) 

Vkt(--U)Wm"(--U)*= Vll(U)exp[-iGm,,(-u)](~]m_n) * +~2(u) (15) 

Wr'( -u  ) Vkt ( - u )  W " " ( - u  )* =~rs exp[iars(-U )] V/l( U ) 

• 

where formally f~ du~i(u)<~ for i=  1, 2, and 3. 

5.1. K~ According to (B.3) the term ~ ( x ,  p) corresponds to 
the following integral: 

fo~ exp( - u-iHiju/e)exp(iHou/e) 

From (14) we see that as e--, +0  this integral behaves as follows: 

fo ~176 au exp ( - u ) f~ij( _ u/e)exp ( iG,j ( - u/e) ) 

~ ---,+o ~`j fo~176 + iGij(-u//e)] --~'_J ( AiJ e )--1 

Thus K~ p) has the following small e behavior: 

K~ --*+o*o(x,P)+ X [*~(x,p)(AiJ+,)-'-*o(x'P)] 
i<j 

where ~ ( x ,  p) is the wave function corresponding to f ~ .  

4~o differs from the modified wave operators of Dollard (1964) by a phase factor. 
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Clearly the prescription for canceling the anomalous terms in K~ p) 
is to replace this expression by/(~ p) defined by 

I(~ P)=q)o(x, P)+ ~, [O~(x, p)NJ+,-Oo(X, p)] 
i<j 

5.2. K~.,(x, p). It is shown in Appendix B that there are two types of 
terms contributing to K~+~(x, p) which correspond to the following two 
integral expressions: 

--i fo~duexp(--eu)Wi~A(-u)Vk~l~(--u)+i fo~duexp(-eu)V~d,(--u) 

(16) 

and 

- - i  f o~  

• f~176 )f~iJ(-v )exp[iGij(-v)] 

+i fo~aUV~,,,(-u)W"(-u)*(~) 

• ~~176 (17) 

We first consider (16). Using (15) we obtain the following behavior as 
e--, +0: 

- " i ! j l f o ~ 1 7 6  fo~176  

+i fo~176 fo~176 

f: [ )] - - , - - a S  j' auexp--~u-~iGilJI(--U iVllll(U) e--, +0 

,..00 �9 I . ..rao 

+1o 
The anomalous terms have been isolated in the first two terms of (18). 
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Translating (18) into the stationary formalism suggests that the terms 
contributing to K~+~(x, p) which have the form 

- f dy[Gi,j,(x; y; E+ie)--Go(x, y; E+ie)]Vk,6(y)dpo(y, p) 

should be replaced by 

- f dy[Gilj,(x, y; E + ie)--Go(x , y; E + ie)]Vk,6(y)epo(y , p) 

+r P) fo~duexp(-eu)iVZ,6(u) } 

This expression is free of anomalous terms in the limit e--> + 0. 
We now consider (17) which in the limit e--> +0  can be replaced by 

- i  fo~dU w6J'(-u)Vkd,(-u)WiJ(-u )*,'Je fu~dvexp[-ev+iG,j(-v )] 

+ i fondU Vk,6(--u)WiJ(--u)*~iY-efu~dvexp[--ev+ iGij(--v)] 

(19) 

Using the relations (15) we can rewrite (19) in the limit e-,  +0  as follows: 

~ ' l J l P l  ( e )  "q- P2(~)"~ifoOOdu[ ~2(" ) --~3( U)] ~'~/..~ j 

(20) 

where 

oO �9 1 
Pl(e )=  -- fo dulVklll(U)exp[iGiljt(--u)--iGij(--u)]~, 

• fu~dvexp[-ev+iG,j(-v)] (21) 

oo I oo P2(e)=fo duiV~ll,(u)exp[-iGij(-u)]efu dvexp[-evq-iGij(-v)] 
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From (20) we conclude that the terms contributing to Kl+~(x, p) which have 
the form 

-- f dy[Gi,j,(x, y; E+ie) -Go(x  , y; E+ie)]V~,t~(y)ejJ+~(y, ) P 

should be replaced by 

-(mo)fay[<,,,(x, y; E + ie)-Go(x , y; E + ie)]Vkj,(y)epiJ (y, p) 

-- ,  +~,tv+ , ,P)P,(e)+q~o(x,p)P2(e)] (22) 

The results of this subsection enable us to replace the term Kl+,(x, p) 
by an expression, denoted R~_~(x, p), which is formally free of anomalous 
terms and divergences in the energy-shell limit. 

5.3. K~_,(x, p). The two types of terms contributing to K2~(x, p) are 
denoted by K~ p) and KiJ(x, p) and are defined by (B.4) and (B.5) with 
n--2. The results of Appendix B show that K~ and, in the limit 
e--, +0, KiJ(x, p) correspond, respectively, to the following integral expres- 
sions: 

fo~176 wi2J2 ( -- u 2 )iVk j=( -- u 2 ) W `'j' ( - u 2 )* 

>( fu?dUlexp(-eUl)Wi'J1(--Ul)iVktl,(-Ul) 

- fo~176 Wi2J2(-u2 )iVk2t2(-u2 ) fu? du, exp(-eul )i Vkd,(--u, ) 

- fo~176 iV<,=(-u2 ) W',J,(- .:  )* 

• f~ exp(-~u,)W',J,(- u,)ivk,,,(- u,) 
U2 

.,>f.?u, ox.  .,> (23) 
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and 

fo~dU2Wi2j2(--Uz)iVk21~(--u2)Wi'Ji(--u2)*fuTdUlWqJl(--ul)iVkA(--Ul) 

-- fo~176 wieJ2 ( -  u 2 ) / V~j2( - u 2 ) 

- fo~dU~ iv~,~(-u~ )W'lJ, (-u~ )* 

)( fuTdUlWilji(--ul)iUklll(--Ul)wiJ(--Ul)* 

X~eLTdvexp[-ev+/G,j ( - v  )] + So=dUElVk2z2(-u2) 

U 2 11 l 

We first consider (23). By repeated applications of (15) we obtain the 
following anomalous terms corresponding to (23)5: 

Hl( O + i: fo~ ~3( u2) - ~2(u: ) ]~  s' 

• LT dui exp[- eul + iGiiji(-- Ul)]V~ili( ul) + i: fo~Cdu2lV~21~( u2) 

- -~I(U2)]L7 dul exp(--eUl)Vtdi( ul ) (25) 

SWe have neglected all terms having a well-defined limit e--*O. 
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where 

.,(e)=fi~J2fff du2 exp[ iGi2j2 ( - u 2 )-iG,,j,(-u 2 )] 

• iV~2t~(u , ) f f f  du, exp( -eu ,  + iGi,j,(-u, ))iV~,t,(u I ) 

-"2J2fo~duzexp[iG,,j2(-u2)]iVZ2,2(u2) 

~176 exp - - 8 u  1 )] • [ +iGi'j'(-u' 

Integrating by parts in (25) it is not hard to show formally that as e-o + 0 
the anomalous terms behave as follows: 

j ,  

• fo~176 exp[--eul +iGi,j,(-Ul)]iV/,,t,(u,) 

+ fo~176176176 (27) 

Note that the coefficients of the anomalous terms appearing in (27) have 
been calculated previously [see (18) and (20)]. Thus in principle the anoma- 
lous terms are known. Subtracting the function corresponding to (27) from 
K~ p) yields an expression which is free of anomalous terms in the 
energy-shell limit. 

By an argument similar to that given above one can show that (24) has 
the following behavior as e-, +0: 

fo~~ f f f  dvexp[-v+iG,j(-v/e)]+H2(e.)+H3(e) (28) 
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where 

H2(e ) :11~ j2 fondu2 exp[ iGi2j2(-u2 )-iGily I(-u2 )] iVtg2(u2 ) 

• dil, o,<p[ iG,,j,(- u,)-  i~,;(- ,,,)] i v',,,(,,,)~ 

XfuTdloexp[-e.vt-iGij(-v)]-~J2So:dti2exp[iGi~j,(-lt2) ] 

• iVZg~(u2)fuTduiiVZd,(ul)Xexp[-iGij(-ul) ] , 
o~ I • fu, dvexp[-ev+iGix(-v)l-fo duziV/c2'2(u2) 

• ] 

• f dvexp[-ev+iGij(-v : , ., )]+/o <~u~iv~:,2(u:) 

• fu 7rill I 1' V'k#l/l( U 1 ) e x p [ - - i G i j  ( - u I )]eSu 7dt)eXp[-eljq-iGij ( -19 ) ]  

(29) 

and 

+ fo=<'Ul,V',,,(u,)ex,>I-,%(- 

xe f dvexp[-ev+iGij(-v)] (30) ul 

Note that the coefficients of the anomalous terms appearing in (30) are 
lira -i known from the calculation of e~+oK+~(x,p). In order to obtain a 

contribution corresponding to KiJ(x, p) which is free of anomalous terms 
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we replace this expression by 

where H2(e ) and H3(e ) are functions corresponding to the operators (29) 
and (30), respectively. 

Thus we have shown that it is possible to replace K2~(x, p) by an 
expression, denoted /~+~(x, p), which is free of anomalous terms and 
divergences as e ~ + 0. 

5.4 K~.,(x,p). It should be clear that the arguments used in the previ- 
ous subsections to extract the anomalous terms for n=0,  1, and 2 can be 
applied to K$~(x, p) for any positive integer n. Thus by an appropriate 
multiplication and subtraction of anomalous terms it is possible to associate 
with K~(x, p) an expression, denoted "" K+~(x, p), which is formally free of 
anomalous terms and divergences as e ~ + 0. 

6. A RENORMALIZED MULTIPLE SCATTERING 
EXPANSION 

A prescription was outlined in Section 5 which enables one to associate 
with K~_~(x, p) an expression/~_~(x, p)  which is free of anomalous terms 
and divergences as e ~ + 0. The resulting perturbation expansion 

o~ 
~,, - n  K+e(x,p) (31) 

n-----0 

will be referred to as a "renormalized" multiple scattering expansion corre- 
sponding to (12). 

Our justification of (31) is based on the conjecture that the anomalous 
expressions in each term of (12) either contribute to the anomalous factor 
which appears in ~+e(x, p)  as e ~  + 0  [see (11)] or do not contribute to the 
physical wave function. In Section 4 it was noted that this anomalous factor 
should be canceled before the e--, + 0  limit is taken. Since the anomalous 
expressions do not contribute to the physical wave function it is appropriate 
to cancel these expressions in each term of (12). Thus in the limit e-,  + 0 the 
renormalized multiple scattering expansion yields the physical wave func- 
tion apart from a momentum-dependent phase factor. 

It should be possible to explicitly show how the various anomalous 
expressions in each term of (12) sum up to the factor A +~ appearing in 
,~+e(x, p)  as e--, +0. This was easy to do for the Born series; however, the 
multiple scattering expansion is considerably more involved. 
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It is straightforward to formulate a renormalized multiple scattering 
expansion for the infinite-mass case corresponding to the integral equation 
(A.6). Denote the multiple scattering expansion corresponding to (A.6) by 

oo 

q,+~(x, p ) =  • J~_~(x, p) (32) 
n : O  

Using the same type of arguments as given in Section 5 it is possible to 
associate with J~_~(x, p) an expression, denoted JT~(x, p), which is free of 
anomalous terms and divergences as e--, + 0. Thus by the same reasoning 
used to justify (31) the expansion (32) should be replaced by the renormal- 
ized multiple scattering expansion 

oo 

~] Jg_~(x, p) (33) 
n = 0  

For example, the first term J%(x, p) i s  given by 

~+ IRA23 ~23 tx, J~ q}+~(x'p' I.', +~1 +~' P)--q~o(x'P)] 

where 

(AI+~)- 1 = fo~duexp[_uWiG12(_u//e)+ iG13(_u//e)] 

7. THE MULTIPLE SCAITERING EXPANSION FOR TWO 
FIXED CHARGED PARTICLES 

In the previous sections we extracted the. anomalous terms which occur 
in the Born series and multiple scattering expansion for the off-shell wave 
function corresponding to the free channel. It was argued that the source of 
these anomalous terms is the incorrect asymptotic condition used in the 
definition of the usual off-shell wave function. In this section we consider a 
simple scattering situation in which anomalous terms arise in the multiple 
scattering expansion despite the fact that the off-shell wave function is 
based on the correct asymptotic condition. 

We consider the scattering of a charged particle by two fixed charged 
particles. The Hamiltonian is given by 

e 2 

Ix+al 
e 2 

ix_Ri - n o  + + V23 
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where R is a fixed vector in R 3. This is a two-body problem which, in a 
sense, mimics the three-body problem of the scattering of a charged particle 
by a neutral fragment. 

Since the two fixed particles have equal but opposite charge the third 
particle effectively interacts with the neutral "fragment" via a short-range 
potential. Thus the usual wave operators exist 

w+_ =s- rim w(t) 
t ~ - 4 -  O0 

W(t)=exp(iHt)exp(-iHot) 

A direct consequence of this result (Zorbas, 1977) is the convergence of the 
off-sheU wave function q~+~(x,p) to the physical wave function q~+(x,p) as 
e ~ + 0 .  

In order to study the occurrence of anomalous terms in the Born series 
and multiple scattering expansion we decompose V(x) as follows: 

where 

with 

V(x) = V' (x )+  v'( , , )  

v , (x)  = [V . (x )  + v:~(x)] x(x)  = v(~(x) + v~'~(x) 

X(x)={10 if [x[>~2[R[ 
if Ix I <2]R[ 

By an argument similar to that used to justify (7) we can write V(t)-- 
exp( iHot )Vexp(- iHot ) as follows: 

v(t)  = v' ( t )  + w( t )  (34) 

where 

and formally 

W [pt 
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In order to examine the Born series for anomalous terms and diver- 
gences in the energy-shell limit we study the t -  - oo behavior of (4) with H 
and H o defined in this section. Using (34) and an argument similar to the 
one used in Section 3 one can show 

n 

W~(t )=  2~ ~ /k ( t ) a ._k( t )  
k = O  

where the ~k(t) formally converge as t--, - oo, Ao(t)=i~/, and 

t k 

Owing to the short-range nature of the potential Vl(x) the expressions 
Ak(t), k =  1,2,. . . ,  converge as t - - , - ~  and thus the nth term of the Born 
series has a well-defined energy-shell limit, i.e., the Born series does not 
develop anomalous terms and divergences as e--, + 0. 

If we sum W~(t) over n we obtain 

u ,u,j 
The off-shell wave function corresponds to the operator g,'+~ which in the 
limit e--, + 0  behaves as follows: 

W§ = f f a .  exp ( - u ) W( - u / e )  

n~ duexp - u + i  dvV (v) 
s "~'-'~@ 0 

~ - ~  35 
r---, + 0  n 

where A is a momentum-dependent phase factor. 
We now consider the Weinberg-Van Winter equations for the off-shell 

wave function 

*+~(x,P) = * o ( x , P ) +  [* ~ (x ,P ) - -* o (x ,P ) ]  + [~bz+3~(x, P ) -*o(X,  P)] 

- f d y [  G. (x ,  y; e + i ~ ) -  Go(X, y; E + i~)]: V23(y)~+~(y, p) 

- fdy[G23(x, y; E+ ie)-- Go(x,y; E + ie)] Vl3 (y)~ +~(y, p) 

(36) 
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Clearly there are anomalous terms and divergences as e--, + 0 in the multiple 
scattering expansion corresponding to (36). For example, the nonhomoge- 
neous term does not converge as e-* +0 since ~ ( x ,  p)  corresponds to a 
potential with an Ixl - 1 behavior as Ixl--, 

The multiple scattering expansion is given by 

oo 

n X q~+~(x,p)= ~ K+~( ,p )  (37 / 
n = 0  

where K~ denotes the nonhomogeneous terms of (36) and for n~  > 1 

K~_~(x,p) = - f d y  ([ G,3(x,y; E + ie)-Go(x,y; E + ie)] V23(Y ) 

gn-I +[G23(x,y; E+ie)-Go(x,Y; E+ie)]Vl3(Y) ) +~ (Y,P) 

It should be clear from the similarity of the multiple scattering expansions 
(37) and (12) that the same argument as used in Section 5 to extract the 
anomalous terms in each term of (12) can be applied to (37). Using the same 
renormalization prescription as given in Section 5 we can associate with 
K~_~(x, p) an expression, denoted /~_~(x, p), which is free of anomalous 
terms. Thus it is possible to replace the multiple scattering expansion (37) 
by a renormalized multiple scattering expansion 

oO 

K+~(x,p) (38) 
n = 0  

which is formally free of anomalous terms and divergences in the energy-shell 
limit. The argument is the same as given in Section 5 and we will not give 
details. 

Our justification of the above renormalization prescription is based on 
the assumption that the various anomalous expressions appearing in the 
terms of (37) contribute to the factor 

oo - u / e  l L auexp[-u+;( avv(v)] 
o t "o J 

which appears in (35). In the limit e-, + 0 the cancellation of the anomalous 
terms in the multiple scattering expansion is thus the same as neglecting the 
momentum-dependent factor A in the physical wave function. Thus the 
renormalized multiple scattering expansion (38) allows one to calculate 
A - l , p + ( x , p ) .  

The occurrence of anomalous terms and divergences in the multiple 
scattering expansion is a consequence of an inadequate choice of unper- 
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turbed term in (36). One should consider the wave function corresponding 
to H as a perturbation of the physical wave functions corresponding to H 0, 
H0 + V13, and H 0 + V23. This is not the case for the integral equation (36) in 
the energy-shell limit. 

8. A MODIFIED PERTURBATION EXPANSION FOR A 
NEUTRAL FRAGMENT 

In this section we consider the perturbation expansion, obtained by 
iterating (3), for the off-shell wave function ~_~(x, p)  corresponding to the 
channel a consisting of a charged particle and a neutral fragment. The 
neutral fragment is assumed to consist of charged particles 1 and 2 with 
particle 1 having an infinite mass (see Appendix A for notation). This 
problem is similar to the two-center problem considered in the previous 
section. We will show the systematic occurrence of anomalous terms in the 
perturbation expansion corresponding to (3). These anomalous terms can- 
not contribute to the off-shell wave function, since ~_~(x, p)  has a well- 
defined limit e-~ + 0. The explicit cancellation of anomalous terms is shown. 

We first rewrite (3) as follows: 

,, _ 1,,, _ E,~+ie)[VS(y)_V[3(y)]ee~+,(y ,p)  q~+~(x ,p)-q~+,(x ,p)  fayG,(x,y; 
(39) 

where VS(y) = V23(Y)+ V[3(y) is a short-range potential. The perturbation 
expansion associated with (39) is denoted by 

oo 

~ _ ~ ( x , p ) =  ~,, H~_':(x,p)  (40) 
n = 0  

where 

a ,O - -  1 , a  p) 

and for n I> 1 

m _ : ( x ,  p ) =  - f ayG,(x, y; E '~ +ie)[VS(y  )-- V[3(y )] H~- ' :- l(y,  p )  

We now use the time-dependent formalism to examine the terms of (40). 
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a,O The term H+~ (x, p)  corresponds to the expression 

fo~176 exp( -- u -  iH 1 u/e )exp( iH,2 u/e )P ~ 

= fo~ • e x p [ - i ( 2 m  3 ) - lA ,u / e - iG13( -u / e ) ]  

• exp[iG13(--u/E)] pa (41) 

where P ~ is the proj ection onto the a-channel sub sp ace, K 13 = - (2 m 3) - lk 3 
+ V13 and G13(t)=fdduVl3(u). As e--+ +0, (41) behaves as follows: 

oo 13pa  13 -1  
~13_P"fo duexp[ -u+iG13( -u / e ) ]=~_  (A+~) 

where fa~ denotes the modified wave operator corresponding to K13. Thus 
the expression "~,0 H+~(x, p) defined as follows: 

/AI3 "~11 et: p)= 

is free of anomalous terms and divergences in the energy-shell limit. 
We now consider ~,l H+~(x, p) which corresponds to the following ex- 

pression: 

- i fo~ iH, u )( V s - V[3 )exp(iH, u )e 

•  e x p ( - e v - i H ,  v )exp(iH,2v )P" --+ - i f ~ d u e x p ( -  iH, u )( V ~ - V[3 ) 
~-+ +0 a 0 

• exp( iHlu ) ~  P% ~~176 exp [ - e v  + iG 13(-v )] 

(42) 

By a similar argument as used to verify (15) we have 

exp(--iH, u ) (V  s -- V~3 )exp(iHlU)~eP ~ = --f~eP~V~3(u)+~(u) (43) 

where formally f~o du ~(u)< oo. 
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Using (43) we can rewrite (42) in the limit e--, +0  as follows: 

-,4~176 ) 4~176247 iG13(-v//e) ] 

+ ~,3_p,~fo~176 ,G,3(_u/e) ] foU/~dv iV[3(v) 

a , l  Thus, in order to avoid divergences and anomalous terms, H+~(x, p)  should 
be replaced by H~_'2(x, p), which is defined by 

iY_i.,lr , , p )=(Al3+~)H~,2(x,p)_q~+(x,p) Al3+~) 
oo u/e.  

• fo duexp[-u+iG'3(-u/e)]fo dviV[3(v) 

where ~ ( x ,  p)  is the product of the bound state wave function and the 
wave function corresponding to f ~ .  

The similarity of equations (1) and (3) suggests that there is a simple 
pattern to the development of anomalous terms in (40). It is not difficult to 
convince oneself, using the same type of argument as given above for n---0 

H a '  n t  X and 1, that as e--> + 0  the nth term +~ ~ , p)  corresponds to the following 
expression: 

[ z . , ]  71k dvexp[-v+iGl3(-v/e)] (n-k)! ' duVl3(U) (44) 
k = 0  0 

where ~k are appropriate functions of x and p. If we sum over n we obtain 
(for Ik~31 < 1) 

n oo 

H~-'n(x,P) --~+O ~ Z ~k~ dvexp[-v+iGl3(--v/e)] 
n = 0  n = 0  k = 0  0 

1 v/eduV[3(u) • (n-k)[ i 

o~ln ~ f dvexp[-v+iG13(-v/e)] 
= n = 0  "0  

l[g. 
• ~.  t duV;3(u = ~. 

n = O  
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This result shows that the anomalous terms appearing in (44) do not 
contribute to the physical wave function, which justifies our renormalization 
prescription for canceling the anomalous expressions appearing in each term 
of (40). 

It is straightforward to associate with H~_'~(x, p) an expression, denoted 
t7I a, n[ x +~ ~ , p), which is free of anomalous terms in the energy-shell limit. The 
resulting renormalized perturbation expansion 

oo 

H+, (x, p ) (45) 
n = 0  

formally converges as e-o +0  to @~_(x, p). 

9. APPLICATIONS 

In this section we use the renormalized perturbation expansions devel- 
oped in this paper to generate various approximate expressions for the T 
matrices corresponding to the excitation and ionization of a neutral frag- 
ment by a charged particle. 

The prior version of the on-shell T matrix for excitation is given by 6 

f p) (46) 

where @~(x, k) denotes the wave function for the incoming a-channel 
Hamiltonian and @~_(x, p)  is the wave function corresponding to W+ ~ . In 
the case of ionization the prior version of the on-shell T matrix has the form 
(Zorbas, 1979) 

(47) 

where @_(x, p)  corresponds to ~2+. Replacing the wave functions appearing 
in (46) and (47) by the renormalized perturbation expansions derived in this 
paper yields perturbation expansions for the excitation and ionization T 
matrices. 

We first consider the excitation T matrix. By a similar argument as 
given in Section 8 the wave function q~_(x, p)  can be calculated via a 

6 This expression is derived from the S operator (2 ~ri)-  l(W+~), Ws by a standard argument. It 
is assumed that  particle 1 has an infinite mass and P"P# =0.  
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renormalized perturbation expansion 

oo 

~_~(x,p)= lim '~, H~_7(x,p) 
e-~ + 0  n = 0  

If we approximate q~_~(x, p)  by the n = 0  term of this expansion we obtain 
the following approximate expression for the excitation T matrix: 

(-~)-lfdx ,/,-(x3,p3)~(x2) V23(x)~(x, k) 

where ~(x2) is the fl-channd bound state wave function and r ) is 
the wave function corresponding to fl~. This approximate expression 
corresponds, apart from a phase factor, to the well-known Coulomb- 
projected Born approximation for excitation (Geltman, 1969; Geltman and 
Hidalgo, 1974). 

We now consider the problem of ionization with all three particles 
having a finite mass. A renormalized scattering expansion for r p) can 
be derived in analogy with (31). If we approximate r p)  by the first 
term of this expansion and substitute this approximate wave function in 
(47) we obtain, apart from momentum-dependent phase factors, the ap- 
proximation recently proposed by Zorbas (1979). 

In the case of ionization with one particle having an infinite mass it is 
natural to use the renormalized multiple scattering expansion for r p) 
corresponding to (33). If we approximate r p) by the first term of this 
expansion we obtain the Coulomb-projected Born approximation for ioniza- 
tion (Geltman and Hidalgo, 1974) (except for a phase factor) together with 
an additional term corresponding to the interaction of the two finite-mass 
particles. 

The renormalized perturbation expansions proposed i n  this paper 
provide a theoretical framework for understanding the known approxima- 
tions for excitation and ionization. Furthermore, these perturbation expan- 
sions yield new approximations for the ionization T matrix and allow one, 
at least in principle, to calculate higher-order corrections to the T matrices 
for excitation and ionization of an uncharged fragment by a charged 
particle. 

The use of the prior version of the T matrix enabled us to circumvent 
the well-known difficulties associated with the post version of the ionization 
T matrix (Prugove~ki and Zorbas, 1978). It has been shown, however, that it 
is possible to calculate the ionization T matrix via the post version if one 
performs a "renormalization" before going to physical energies (McCartor 
and Nuttall, 1971; Prugove~ki and Zorbas, 1978). If one considers the 
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ionization of a charged fragment by a charged particle, neither the post or 
prior versions of the T matrix are well defined. In this case one must 
consider the renormalized expressions for the T matrix. 

10. CONCLUDING REMARKS 

In recent years there has been considerable progress in understanding 
the difficulties associated with multiparticle scattering when Coulomb forces 
are present. Various stationary formalisms have been proposed for cir- 
cumventing these problems (Veselova, 1970, 1972; McCartor and Nuttall, 
1971; Rosenberg, 1973; Prugove6ki and Zorbas, 1973; Gibson and 
Chandler, 1974; Zorbas, 1974, 1977; Alt et al., 1978; Mekur'ev, 1979). 
Many of these formalisms are of a theoretical nature and have not yet led to 
practical computational results. The most promising results have been based 
on the "renormalization" of screened scattering amplitudes (Alt et al., 1978) 
and have so far been restricted to multiparticle scattering involving at most 
two charged particles. 

In the present paper we have shown that the "off-shell renormalization" 
prescription, proposed by Zorbas (1977), can be carried out on the level of 
perturbation theory. We have restricted our attention to scattering involving 
three charged particles. It should be possible, however, to use the techniques 
of this paper to obtain at least a formal understanding of perturbation 
theory for general scattering systems involving long-range forces. For exam- 
ple, the problem of anomalous terms in perturbation theory for screened 
Coulomb potentials, general long-range potentials, general N-particle sys- 
tems, and the problem of infrared divergences in quantum electrodynamics 
are natural candidates for study via the techniques of this paper. 

A P P E N D I X  A: THREE-BODY OFF-SHELL INTEGRAL 
EQUATIONS 

A derivation of various off-shell integral equations is given in this 
appendix together with a brief discussion of the notation used in this paper. 

We first consider three particles labeled 1, 2, and 3 with particle i 
having mass/~i and position coordinate r i. After eliminating the center-of- 
mass motion the internal full Hamiltonian is given by 

H=Ho+V, V---- E Ej, L+ 
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For example, choosing x 1 = r  2 - r  I and x 2 = r  3 -(/~lrl +/x2r2)/(/x I +/~2) 
then 

2 

H o = - -  2 (2m,)- 'A,  
i=1 

w i t h  m/- 1 : ~-+11 + (2j<~illj) -- 1 a n d  

V(x )= Vl2(Xl)-~- Vl3(X2 + ~ l ~ x t  )-~- V23(x2 "-' x ) 
/s "-}- ~ 2 l 

where x denotes collectively (x 1, x 2) and p will denote collectively (pl, P2), 
where p~ is the momentum conjugate to x v 

The Green's functions corresponding to the resolvents (H-z)  -1, 
( H 0 - z )  - l ,  and (H~j-z) -1, Hij=Ho+Vij, are denoted, respectively, by 
G(x, y; z), Go(x, y; z), and Gij(x, y; z). The various off-shell wave func- 
tions corresponding to the free channel are defined by the following 
integrals: 

,+~(x, p)= (-i,) f ay,o(y, p)a(x, y; E+ie) 

r p)= (-ie) f dy%(y, p )G~j(x, y; E +e) 

r p ) =  (27r)- 3 exp(ip.x ) 

where E=p2/2ml +p2/2m2. 
The following identities are satisfied by the various resolvents 

( H - z ) -  I = ( H o  --Z)-I--(Ho--Z)-Iv(H--z) -1 

(H_z) - i  -1 -1 =(zC.-z) -(H.-z) 2 
k<l (k,l)~(i,j) 

(A.1) 

Via(H-z) -1 (A.2) 

Adding (A.2) with (i, j )=(1,2),  (1,3), and (2,3) and subtracting two times 
(A.1) yields the Weinberg-Van Winter equations for the resolvent 

(H--z)-I=(Ho--Z) -l'j- 2 [(Hij--z)-I--(Ho--Z) -I] 
i<j 

- X [(-.-z)-l-(/Co-z) -'] x v.(.-z)-' 
i<j k<j (k,l)q=(i,j) 

(A.3) 
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Expressing (A.1) and (A.3) in terms of Green's functions and using the 
various definitions of the off-shell wave functions yields (1) and (2), 
respectively. 

A considerable simplification occurs if we assume one of the particles, 
say particle 1, has an infinite mass. In this case the Hamiltonian is given by 

H = H o + V  

H 0 = - (2m 2 ) -  1A 2 --  (2m 3) -  lA3, 

v ( x  ) :  vi2(x 2 ) + v,3(x 3 ) + v23(x 3 - x2 ) 

where x i represents the position coordinate of particle i with respect to 
particle 1 which is located at the origin. We will use the same notation for 
Hi i, the Green's functions, and the wave functions as in the finite-mass case. 

It is convenient to consider the operator H 1 = H o +  VI2 + V13. The 
resolvent ( H  l - z ) -  1 satisfies 

( H - - z ) - ' : ( H  1 - - z ) - l - - ( H l - z ) - I V z 3 ( H - - z )  -~ (A.4) 

Since H 1 can be written as a sum of two operators which commute it is 
possible to obtain (Geltman, 1969) an explicit integral representation for the 
Green's function G~(x, y; z) corresponding to ( H  l - z )  -1. We require the 
following off-shell wave functions corresponding to the free channel and to 
the channel a with particles 1 and 2 bound: 

epl+~(x, p ) :  (-i~) f ayeoo(y, p )Gl(x,  y; E+ie)  

e~%~(x, p)= (-ie) f dyr p)G(x, y; E '~ +ie) 

~ ( x ,  p)= (-i~) f ay~,~(y, p)Gl(x, y; E ~ +i~) 

~,~(x, p ) = (2~r)-3/2~ (x 2 )exp (iP3 .x 3 ) 

where ~(X2)  denotes the bound-state wave function corresponding to the 
energy E b and E ~ = E b +p23/2m 3. Lippmann-Schwinger-type integral equa- 
tions for q~+~(x, p )  and ~%~(x, p )  follow immediately from (A.4). 

A set of Weinberg-Van Winter-type integral equations involving the 
Green's function and wave function corresponding to H~ can also be 
derived. Adding (A.2) with ( i , j ) = ( 2 , 3 )  to (A.4) and subtracting (A.1) 
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yields 

( H--z ) - l=(  H, --z ) - '  + ( H23 - z  ) - ' - (  Ho-z  ) -l 

--[(H 1 --Z)-I--(Ho--z)-l]v23 (H-Z)-I 

Zorbas 

--[ ( H23--z )- l--(  Ho--Z )-I](v12-~- Vl3)( H--z ) -1 

(A.5) 

Thus in the infinite mass case @+~(x, p) satisfies the integral equation 

~+~(x, p)=~'+.(x, p ) +  [ ~ . ( x ,  p)-~o(X, p )] 

- fdy[Gl(x ,  y; E+ie)-Go(x, y; E+ie)]V23(y)ep+,(y, p) 

- fay[G2,(x, y; E+ie)--Go(x, y; E +ie)] 

X [V12(y)+ V13(y)]O+~(y , p) (A.6) 

APPENDIX B: TIME-DEPENDENT THEORY AND THE 
MULTIPLE SCATrERING EXPANSION 

In this appendix we give a formal argument to relate the terms 
appearing in the multiple scattering expansion (12) to the time-dependent 
formalism. 

We first consider the expression @~(x, p) appearing in K~ p). It is 
not difficult to verify the following equality for appropriate ~ (see Section 4 
of Zorbas, 1977): 

oo Hij ----~-iedxE~~ (x)= fdpq,~(x ,p)~(p)  (B.1) 

Furthermore the identity 

- ie  _fo~176 + ixu )  Hij -X- i e  (B.2) 



Perturbation Theory 953 

together with an interchange of integrals yields 

( fo~176 u )exp ( i . o  u )ff )(x)= f dpep~(x,p)~ (p) 

Clearly the t -~ -o0  behavior of W[J(t)=exp(iHtfl)exp(-iHo t) is directly 
related to the e~  +0 behavior of ~ ( x ,  p). 

We now consider K~_~(x, p) for n ~  1. The two types of terms, denoted 
by K~ p) and KiJ(x, p), which contribute to K~_~(x, p) have the follow- 
ing general form: 

p )=(--])~ y,,; E+ie)--Go(x, y,,; E+ie)]Vk.z.(yn) K~ 

• fay._,[G,._~j._,(y., y._,; E+ie)--Go(Y,,, Y.-l; E+ie)]  

• ... • 2, y,;E+ie)] 

• Vkd,(yl)eOo(y l, p) (B.4) 

and 

KiJ(x, p)=( -1 )" fay . [G,~  y.; E+ie)-Go(x , Yn; E+ie)]V;,.t.(y,) 

• fdy._,[G,._,,._,(y., y._,; E+ie)-Go(Y., y,,_,; E+ie)] 

• ... • 

i j  X Vkdt(yl)dO+e(yl, p) (B.5) 

where (k s, ls)#(is, j~) for s=  1,2 ..... n. 
By an argument similar to the one used to verify (B.1) we have for each 

e>0 and for appropriate ~ the following equalities: 

f dp ;,:~ x, p ( p ) (B.6) 
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( KiJ~/ )( x )= f dp KiJ( x, p )~ ( p ) (B.7) 

where the operators K ~ and K u are defined by the following spectral 
integrals (Amrein et al., 1977; Prugove~ki, 1971): 

K O : ( _ l ) , ~ (  1 1 )  
Hi.j - 2t-- ie H o - A -  ie 

( 1 1 ) 
X Vknln Hin_ljn_ 1 - -X-- ie  H 0 - X - - i e  

and 

( 1 , ) 
X ' ' ' X  HilJl__~__iE Ho_A_ i  e Vk~hdxEff~ (B.8) 

_ Hi . j - ? t - i e  H o - k - i e  V~:.t.• 

X( 1 1 ) - i e  
Hiljl_•_ie H o _ k _ i  e F/,,h Hij_2t_iedxEffo (B.9) 

Using (B.2) and interchanging integrals we can rewrite K ~ and K tj as 
follows: 

K ~ =(-i)"fo~176 )--exp(--iHou,)]Vk.,. 

X - . - •  fo~176 )--exp(--iHoul) ] 

X Vklhexp[+iHo(u I + . . .  +un) ] (B.IO) 
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and 

) 

)'( " " " X f o ~ 1 7 6  )--eip(.--'Soul) ] 

X Vk ,6(e) fomavexp(-ev- iUi jv )exp[ iHo(v+u,  + ' " "  + u . ) ]  

(B.11) 

Multiplying the various terms making up (B.10) and (B.11) and then 
performing the substitutions u ~ = u , + . . . + u  I in the u I integral, u~ = u  n 
+ �9 �9 �9 + u  2 in the u 2 integral,..., and finally u', =u,  in the u n integral, we 
obtain 

K~ = ( -  i )" fomdu,,exp( - iUi.j u. )exp( iHou. ) Vkd . ( -u .  ) 

X exp( -  iHou,, )exp (+iH, ._o._,u.)s  iHi._,j._,,u,,-1 ) 

X exp( iHoun_ , ) Vk._d._,(--Un_ l ) • " " • Vk26(-u2 ) e x p ( -  iHou2 ) 

Xexp( iH6ju 2 ) fu7 du, e x p ( - e u , -  iH6ju 1 )exp(iHou 1 ) 

X W k l l l ( - - g , ) - ~ - ' " ~ - ( i ) n f o ~ 1 7 6  

X ' " X  fuTdUlexp(-eUl)Vk, l , ( -u , )  (B.12) 

and 

KiJ = (- i )~ fo~176 exp(- iHid u,, )exp( + iHou ~ ) Vkd.( - u ,  ) 

,,ou. )exp( ,<.._ u. )  uo_,exp( - ,,,_,,_ ) 

•215163 
�9 n O0 00 

+ +(')fo au.vk~176 
X ".. • V ( - u , ) ( e ) f u T d v e x p ( - e v - i U q v ) e x p ( i H o v  ) (B.13) 
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The equalities (B.6) and (B .7) toge ther  with (B.12) and (B.13) provide the 
link between the t ime-dependent  formalism and the terms in the multiple 
scattering expansion. 
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